Publications

Allen, S.; Allen, D.; Moss, K.; Le Roux, G.; Phoenix, V. R. & Sonke, J. E. (2020), ‘Examination of the ocean as a source for atmospheric microplastics‘, PLOS ONE 15(5), 1-14
https://doi.org/10.1371/journal.pone.0232746

Avossa, J.; De Cesare, F.; Papa, P.; Zampetti, E.; Bearzotti, A.; Marelli, M.; Pirrone, N. & Macagnano, A. (2020), ‘Characteristics and Performances of a Nanostructured Material for Passive Samplers of Gaseous Hg‘, Sensors 20(21)
https://doi.org/10.3390/s20216021

Bieser, J., Angot, H., Martin, L., Slemr, F.; ‘Atmospheric mercury in the Southern Hemisphere – Part 2: Source apportionment analysis at Cape Point, South Africa‘. Atmospheric Chemistry and Physics, 20 10427–10439, 2020
https://doi.org/10.5194/acp-20-10427-2020

Bohlin-Nizzetto, P.; Melymuk, L.; White, K. B.; Kalina, J.; Madadi, V. O.; Adu-Kumi, S.; Prokeš, R.; Přibylová, P. & Klánová, J. (2020), ‘Field- and model-based calibration of polyurethane foam passive air samplers in different climate regions highlights differences in sampler uptake performance‘, Atmospheric Environment 238, 117742
https://doi.org/10.1016/j.atmosenv.2020.117742

Bruno D.E., Ruban D.A., Tiess G., Pirrone N., Perrotta P., Mikhailenko A.V, Ermolaev V.A., Yashalova N.N.,(2020). ‘Artisanal and small-scale gold mining, meandering tropical rivers, and geological heritage: Evidence from Brazil and Indonesia‘. Science of The Total Environment, 715, 136907, 2020
https://doi.org/10.1016/j.scitotenv.2020.136907

Carbone, F.; Alberti, T.; Sorriso-Valvo, L.; Telloni, D.; Sprovieri, F.; Pirrone, N.,Scale-Dependent Turbulent Dynamics and Phase-Space Behavior of the Stable Atmospheric Boundary Layer‘. Atmosphere 2020, 11, 428
https://doi.org/10.3390/atmos11040428

Carbone, F.; Telloni, D.; Bruno, A.G.; Hedgecock, I.M.; De Simone, F.; Sprovieri, F.; Sorriso-Valvo, L.; Pirrone, N. Scaling Properties of Atmospheric Wind Speed in Mesoscale Range‘. Atmosphere 2019, 10, 611. https://doi.org/10.3390/atmos10100611

Carbone, Francesco, et al.Statistical Analysis of Field-Aligned Alfvénic Turbulence and Intermittency in Fast Solar Wind‘. Universe 6.8 (2020): 116
https://doi.org/10.3390/universe6080116

Chouhan, R. S.; Jerman, I.; Heath, D.; Bohm, S.; Gandhi, S.; Sadhu, V.; Baker, S. & Horvat, M. (2020), ‘Emerging tri-s-triazine-based graphitic carbon nitride: A potential signal-transducing nanostructured material for sensor applications‘, Nano Select. 2020; 1‐ 32
https://doi.org/10.1002/nano.202000228

Custodio, D.; Ebinghaus, R.; Spain, T. G. & Bieser, J. (2020), ‘Source apportionment of atmospheric mercury in the remote marine atmosphere: Mace Head GAW station, Irish western coast‘, Atmospheric Chemistry and Physics 20(13), 7929–7939
https://doi.org/10.5194/acp-20-7929-2020

De Cesare, F.; Di Mattia, E.; Zussman, E. & Macagnano, A. (2020), ‘A 3D soil-like nanostructured fabric for the development of bacterial biofilms for agricultural and environmental uses‘, Environ. Sci.: Nano 7, 2546-2572
https://doi.org/10.1039/D0EN00268B

De Simone, F.; D’Amore, F.; Marasco, F.; Carbone, F.; Bencardino, M.; Hedgecock, I. M.; Cinnirella, S.; Sprovieri, F. & Pirrone, N. (2020), ‘A Chemical Transport Model Emulator for the Interactive Evaluation of Mercury Emission Reduction Scenarios‘, Atmosphere 11(8)
https://doi.org/10.3390/atmos11080878

Fourie, D.; Hedgecock, I. M.; Simone, F. D.; Sunderland, E. M. & Pirrone, N. (2019), ‘Are mercury emissions from satellite electric propulsion an environmental concern?‘, Environmental Research Letters 14(12), 124021
https://doi.org/10.1088/1748-9326/ab4b75

Hoglind Hanna, Eriksson Sofia, Gårdfeldt Katarina,Ship-based measurements of atmospheric mercury concentrations over the Baltic Sea’. Atmosphere (2018) Vol 9, 56
https://doi.org/10.3390/atmos9020056

Kalina, J., White, K. B., Scheringer, M., Pribylova, P., Kukucka, P., Audy, O., Klanova, J., ‘Comparability of long-term temporal trends of POPs from co-located active and passive air monitoring networks in Europe‘. Environmental Science: Processes and & Impacts (2019), 21 (7), 1132-1142
https://doi.org/10.1039/C9EM00136K

Kanhai, L. D. K., K. Gardfeldt, T. Krumpen, R. C. Thompson and I. O’Connor (2020). ‘Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean‘. Scientific Reports 10(1): 5004
https://doi.org/10.1038/s41598-020-61948-6

Kanhai, L. D. K., C. Johansson, J. P. G. L. Frias, K. Gardfeldt, R. C. Thompson and I. O’Connor (2019). ‘Deep sea sediments of the Arctic Central Basin: A potential sink for microplastics‘. Deep Sea Research Part I: Oceanographic Research Papers 145: 137-142
https://doi.org/10.1016/j.dsr.2019.03.003

Kanhai, L. D. K., K. Gardfeldt, O. Lyashevska, M. Hassellöv, R. C. Thompson and I. O’Connor (2018). ‘Microplastics in sub-surface waters of the Arctic Central Basin‘. Marine Pollution Bulletin 130: 8-18
https://doi.org/10.1016/j.marpolbul.2018.03.011

Lim, A. G.; Jiskra, M.; Sonke, J. E.; Loiko, S. V.; Kosykh, N. & Pokrovsky, O. S. (2020), ‘A revised pan-Arctic permafrost soil Hg pool based on Western Siberian peat Hg and carbon observations‘, Biogeosciences 17(12), 3083–3097
https://doi.org/10.5194/bg-17-3083-2020

Moretti, S.; Salmatonidis, A.; Querol, X.; Tassone, A.; Andreoli, V.; Bencardino, M.; Pirrone, N.; Sprovieri, F. & Naccarato, A. (2020), ‘Contribution of Volcanic and Fumarolic Emission to the Aerosol in Marine Atmosphere in the Central Mediterranean Sea: Results from Med-Oceanor 2017 Cruise Campaign‘, Atmosphere 11(2)
https://doi.org/10.3390/atmos11020149

Naccarato, A.; Tassone, A.; Cavaliere, F.; Elliani, R.; Pirrone, N.; Sprovieri, F.; Tagarelli, A. & Giglio, A. (2020), ‘Agrochemical treatments as a source of heavy metals and rare earth elements in agricultural soils and bioaccumulation in ground beetles‘, The Science of The Total Environment 749, 141438
https://doi.org/10.1016/j.scitotenv.2020.141438

Naccarato, A., Tassone, A., Martino, M., Moretti, S., Macagnano, A., Zampetti, E., Papa, P., Avossa, J., Pirrone, N., Nerentorp, M., Munthe, J., Wängberg, I., Stupple, G. W., Mitchell, C. P. J., Martin, A. R., Steffen, A., Babi, D., Prestbo, E. M., Sprovieri, F., and Wania, F., ‘A field intercomparison of three passive air samplers for gaseous mercury in ambient air‘. Atmos. Meas. Tech. Discuss. [preprint], , in review, 2020
https://doi.org/10.5194/amt-2020-455

Pernov, J. B.; Bossi, R.; Lebourgeois, T.; Nøjgaard, J. K.; Holzinger, R.; Hjorth, J. L. & Skov, H. (2020), ‘Atmospheric VOC measurements at a High Arctic site: characteristics and source apportionment‘, Atmospheric Chemistry and Physics, 21, 2895–2916, 2021
https://doi.org/10.5194/acp-21-2895-2021

Pernov, J.B. Jensen, B. Massling, A. and Skov, H. Dynamics of gaseous oxidized mercury at Villum Research Station during the High Arctic summer. Pernov, J. B., Jensen, B., Massling, A., Thomas, D. C., and Skov, H., ‘Dynamics of gaseous oxidized mercury at Villum Research Station during the High Arctic summer‘. Atmos. Chem. Phys. Discuss. [preprint], in review, 2021
https://doi.org/10.5194/acp-2020-1287

Saiz-Lopez, A.; Travnikov, O.; Sonke, J. E.; Thackray, C. P.; Jacob, D. J.; Carmona-Garcia, J.; Francйs-Monerris, A.; Roca-Sanjuбn, D.; Acuсa, A. U.; Dбvalos, J. Z.; Cuevas, C. A.; Jiskra, M.; Wang, F.; Bieser, J.; Plane, J. M. C. & Francisco, J. S. (2020), ‘Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere‘, Proceedings of the National Academy of Sciences 117(49), 30949–30956
https://doi.org/10.1073/pnas.1922486117

Skov, H. Hjorth, J. Nordstrøm, C. Jensen B. Christoffersen C. Poulsen M.B. Liisberg J.B. Beddows, D. Dall’Osto, M. Christensen, J. (2020), ‘The variability in Gaseous Elemental Mercury at Villum Research Station, Station Nord in North Greenland from 1999 to 2017‘. ACP, vol 20, 13253–13265
https://doi.org/10.5194/acp-2019-912

Slemr, F.; Martin, L.; Labuschagne, C.; Mkololo, T.; Angot, H.; Magand, O.; Dommergue, A.; Garat, P.; Ramonet, M. & Bieser, J. (2020), ‘Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017‘, Atmospheric Chemistry and Physics 20(13), 7683–7692
https://doi.org/10.5194/acp-20-7683-2020

Tassone, A.; Moretti, S.; Martino, M.; Pirrone, N.; Sprovieri, F. & Naccarato, A. (2020), ‘Modification of the EPA method 1631E for the quantification of total mercury in natural waters‘, MethodsX 7, 100987
https://doi.org/10.1016/j.mex.2020.100987

White, K.B., Kalina, J., Scheringer, M., Přibylová, P., Kukučka, P., Kohoutek, J., Prokeš, R., Klánová, J., ‘Temporal Trends of Persistent Organic Pollutants across Africa after a Decade of MONET Passive Air Sampling‘. Environmental Science and Technology (in press)
https://doi.org/10.1021/acs.est.0c03575

Wong F, Hung H, Dryfhout-Clark H, Aas W, Bohlin-Nizzetto P, Breivik K, Nerentorp Mastromonaco M, Broström Lundén E, Olafsdottir K, Sigurdsson A, Vorkamp K, Bossi R, Skov H, Hakola H, Barresi E, Sverko E, Fellin P, Li H, Vlasenko A, Zapevalov M, Samsonov D, Wilson S., ‘Time Trends Of Persistent Organic Pollutants (Pops) And Chemicals Of Emerging Arctic Concern (Ceac) In Arctic Air From 25 Years Of Monitoring‘. Science of The Total Environment. In press. https://doi.org/10.1016/j.scitotenv.2021.145109

Zhao, L-L., et al. (2020), ‘Spectral Features in Field-aligned Solar Wind Turbulence from Parker Solar Probe Observations‘. The Astrophysical Journal 898.2: 113
https://doi.org/10.3847/1538-4357/ab9b7e